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The Tilt-Rotor Aeroacoustic Model (TRAM) test in the Duitse-Nederlandse Wind
(DNW) Tunnel acquired blade pressure data for forward flight test conditions of a
tiltrotor in helicopter mode.  Chordwise pressure data at seven radial locations were
integrated to obtain the blade section normal force. The present investigation
evaluates the use of linear regression analysis and of neural networks in estimating
the blade section normal force coefficient from a limited number of blade leading-edge
pressure measurements and representative operating conditions.  These network
models are subsequently used to estimate the airloads at intermediate radial locations
where only blade pressure measurements at the 3.5% chordwise stations are available.

Nomenclature

a speed of sound

A rotor disk area, πR2

c local blade chord

cref blade reference chord

cn blade section normal force coefficient,
N/(1/2ρU2c)

cp pressure coefficient, p/(1/2ρU2)

CT rotor thrust coefficient, T/ρ(ΩR)2A (shaft axes)

M Mach number

Mtip blade tip Mach number, ΩR/a

nn neural network

p local blade pressure

r blade radial station (0 to R)

R blade radius

U local velocity

V free stream velocity; wind tunnel speed
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α, ashaft rotor shaft angle (positive aft)

µ, mu advance ratio, V/ΩR

ρ air density

σ rotor solidity, Ncref/(πR) (σ = 0.105 for
TRAM)

ψ, az blade azimuth angle (zero azimuth is
downstream)

Ω rotor rotational speed

Introduction

The tiltrotor aircraft configuration has the potential of
revolutionizing the air transportation system by
providing an economical combination of vertical take-
off and landing capability with efficient high-speed
cruise flight.  To achieve this potential NASA has
invested heavily in tilt rotor research, both
experimentally (Refs. 1-2) and theoretically (Refs. 3-4).

During recent wind tunnel testing of the Tilt-Rotor
Aeroacoustic Model (TRAM), blade pressure
measurements were acquired from some 150 pressure
transducers, distributed over two of the three TRAM
rotor blades.  These blade pressures allowed for the
computation of the blade section normal force
coefficient at several radial stations.

The present investigation evaluates the use of linear
regression and of neural networks in estimating blade
section airloads from blade leading edge pressures and



representative test conditions.  The objective of the
present study is three-fold: a) evaluate the ability of
regression and neural network models to estimate blade
section airloads from leading edge pressure data; b)
evaluate the ability of such models to estimate the
airloads at a radial location where bad pressure
transducer(s) prevented the computation of cn from
detailed chordwise pressure data; and c) evaluate these
models in estimating the airloads at those radial stations
where only pressure data at the 3.5% chord-wise station
were available.

Previous Work

Other researchers (Refs. 5-8) have reported on using
leading edge pressure measurements to estimate blade
section airloads.  

References 5-7 describe a technique used at Royal
Aerospace Establishment (RAE) of using a pressure
sensor near the leading edge of the rotor blade to
determine the incidence, α , and local aerodynamic
loading, cn, using a comprehensive look-up table
compiled from two-dimensional airfoil characteristics
with suitable allowance made for the various unsteady
effects. The pressure instrumented blade described in
Ref. 6 had an array of 20 leading edge and 20 trailing
edge pressure sensors.  The leading edge sensors are
located at 2% chord in the upper blade surface and their
position was chosen to minimize structural weakening
of the blade resulting from the small depression in the
blade spar necessary to accommodate the transducer into
the profile.  Reference 5 states that leading edge
locations in the range from 0 to 3% chord would in
general be suitable for use in the described technique.
The trailing edge sensors are used to indicate the
presence of stall (Ref. 5).  The "stall indicator" sensors
were externally mounted at 98% chord and were locally
blended into the surface by a fairing, which should had
minimal effect on the flow in this region.

Reference 8 discusses the deduction of the local airload,
cn, from the pressure data obtained from a few stations
near the leading edge for the Higher-Harmonics Control
Aeroacoustic Rotor Test (HART).  One blade of the
BO-105 model rotor was equipped with 124 pressure
sensors.  Three radial sections (0.75R, 0.87R, and
0.97R) were fully instrumented with 24 or 44 sensors.
Sensors were located in the upper and lower blade
surface at the 3% chord location at six radial locations
(0.6R, 0.7R, 0.8R, 0.9R, 0.94R and 0.99R).  Data
from the fully instrumented sections were used to
correlate the section airloads, cn, to the cp-data at the 3%
chord location assuming a linear transfer function of the
form cn=a*X+b. Reference 8 looked at using only upper

surface pressure, X=cp,upper, using the difference between
upper and lower pressure, X=∆cp, and using upper and
lower pressures as separate inputs to the transfer
function (i.e., cn=a1*cp,upper+a2*cp,lower+b).  The pressure
difference at 3% chord at the 0.62R location were used
to estimate the local airloads using the transfer function
obtained from the data for the 0.75R station.  Reference
8 states that it would be preferable to use the data from
a more downstream station than at 3% chord.  In fact, it
uses the transfer function determined from 9% chord data
at the fully instrumented sections for the airloads
computation from pressure data in a noise prediction
code, called CONGA (Computation of Noise using
Gauges Aerodynamics).

TRAM Physical Description

The TRAM was designed as a 1/4-scale V-22 tiltrotor
aircraft model.  The rotor has a diameter of 9.5 ft.
Details of the TRAM physical description can be found
in Ref. 1.

The rotor blades and hub are designed as geometrically
and dynamically scaled models of the V-22 blades.  The
hub is gimbaled with a constant velocity joint
consisting of a spherical bearing and elastomeric torque
links.  The balance and flex-coupling measure forces and
torque.  The blade set has both strain-gauged and
pressure-instrumented blades.  There are 150 pressure
transducers distributed over two blades: primarily at
radial stations 0.50, 0.62, 0.82, and 0.96 on blade #1,
and at radial stations 0.33, 0.72, 0.90, and 0.98 on
blade #2 (see Table 1).  At seven intermediate radial
locations (r/R=0.93, 0.87, 0.77, 0.67, 0.56, and 0.42)
pressure measurements were acquired only at the 3.5%
chord-wise station.  The pressure measurements can be
integrated chordwise to obtain blade section normal
force at seven primary radial stations (insufficient
chordwise points are available at the 0.98 station).
Reference 2 describes the data reduction process for the
blade pressures and section normal force.  The third
blade carries all of the required safety of flight strain
gauge instrumentation.

Because of instrumentation problems not all pressure
transducers were functional at all times.  At the start of
the test, 135 of the pressure gauges were operational
(see Table 1).  For some test conditions, bad pressure
transducer signals resulted in the inability to compute
the blade section normal force coefficient at all seven
radial stations.



Table 1 Blade pressure instrumentation

=================================================================================================
Chordwise position of pressure measurements, % chord, on upper (U) and lower (L) blade

surface

2 . 0 3 . 5 6 . 5 1 0 . 5 1 5 . 0 2 1 . 0 3 0 . 0 3 7 . 5 4 5 . 0 5 2 . 5 6 5 . 0 9 0 . 0

r/R U L U L U L U L U L U L U L U L U L U L U L U L

0.98 2 2 2 2 2 2 2 2

0.96 1 1 1

2

1

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.93 2 2

0.90 2 2 2

1

2

1

2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.87 2 2

0.82 1 1 1

2

1

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.77 2 2

0.72 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.67 2 2

0.62 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.56 2 2

0.50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.42 2 2

0.33 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

=================================================================================================
Numbers 1 and 2 indicate that the pressure transducer is on blade 1 or blade 2, respectively.

Shaded numbers 1 and 2 indicate that the pressure transducer is non-operational at start of test.

Red/bold/italic numbers 1 and 2  indicate that the pressure transducer is non-operational for some of the considered
twelve test points (identification for 2.0%, 3.5%, and 6.5% chordwise stations only). 

Data Reduction

The pressure measurements were sampled at 2048 per-
rev. and data were collected for 64 revolutions.  The
pressure data in this report are a single revolution of
data obtained by averaging over the 64 revolutions
collected.  To eliminate high frequency noise, a fast
Fourier transform (FFT) is performed on the single
revolution of airloads data and only the first 64
harmonics are maintained; an inverse FFT is performed
to reconstruct the time history of 128 points in a
revolution (reduced from 1024 harmonics representing
2048 samples).  All the blade-vortex interaction events

in the section normal force data are captured using 64
harmonics.

The measured balance loads of the TRAM in the DNW
are corrected for model weight tares, aerodynamic tares,
and for the influence of the wind tunnel walls.  Details
can be found in Ref. 3.  These corrections remove the
effects of gravity and spinner from the measured
performance data.

The data reduction process for the pressure and airloads
measurements is described in Ref. 2.  The pressure
coefficient is obtained from the pressure by dividing by
the local section dynamic pressure: cp = p/(1/2ρU2),



where U is the local blade velocity obtain by combining
free stream velocity and blade rotational velocity.  The
section normal force coefficient, cn = N/(1/2ρU2c) is
obtained by integrating the pressure coefficients.  

Test Conditions

Reference 3 reports that pressure data were acquired for
463 points consisting of 29 static points, 330
helicopter mode points, 37 airplane mode points, and 67
hover mode points.  Reference 3 discusses the pressure
instrumentation problems and how it affects the
availability of obtaining section airloads from the
chordwise pressure data at the seven radial locations.   

Pressure data were acquired at advance ratios of 0.125,
0.15, 0.175, and 0.20; and at CT/σ of 0.089, 0.108, and
0.128 (some limited data acquired at 0.098 and 0.118).
Multiple repeat points were acquired at each test
condition.  Some 98 different test conditions were
identified and the availability of leading edge pressure
data and section airloads was examined.  Essentially, as
the DNW test progressed, instrumentation problems
prevented the determination of section airloads at several
stations.   Also blade leading edge transducers on either
the upper or lower blade surface might have been non-
operational for later test points.

Twelve test conditions were selected for this initial
evaluation of the ability of linear regression models and
neural networks to estimate the blade section normal
force coefficient from a limited set of blade pressure
data.  These twelve test conditions are for helicopter
mode forward flight and were analyzed in detail in
Ref. 4.  The nominal operating conditions are advance
ratio µ = V/ΩR = 0.15, rotor thrust CT/σ = 0.089 and
0.128, and shaft angle of attack from –10º (forward) to
+10º (aft).  

Sample blade section airloads measured in helicopter
mode are presented in Figs. 1 and 2, which show cn as
function of azimuth at the r/R = 0.90 and = 0.62 radial
stations, respectively.  The measured airloads show
significant blade-vortex interaction at the tip for all
twelve conditions, at both high and low thrust, and at
both positive and negative shaft angles.

Evaluation Database

The test conditions, the blade pressure data at the
various chord-wise locations, and the blade section
normal force coefficient data for seven radial stations,
r/R, were combined into a single database upon which
the linear regression  and neural network  computations
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were performed.  The airloads could not be determined at
all seven radial stations for all twelve test conditions
due to instrumentation problems with pressure
transducers at various blade stations.  Such
instrumentation problems were corrected to the extent
possible between test runs.  Therefore different pressure
transducers were non-operational for different test points
acquired at different times during the wind tunnel test.

Concatenating the data for the twelve test conditions
results in 12*128=1536 samples for each measurement
channel in the database.  The database for this study
contains 60 possible input channels (four test
conditions, azimuth angle, and 45 blade leading-edge
pressures from fourteen radial location r/R and acquired
at the 2.0%, 3.5%, or 6.5% chord-wise station) and
seven possible output channels (cn at r/R=0.96, 0.90,
0.82, 0.72, 0.62, 0.50, and 0.33).
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Fig. 3. Airloads and blade leading-edge
pressure measurements at 3.5% chord at
radial location r/R=0.90 and test conditions.

Figure 3 depicts the data base content for the airloads at
r/R=0.90 and shows the cn data, the cp measurements at
the 3.5% chord-wise location on the upper and lower
blade surface, the test conditions CT/σ and shaft angle of
attack, α, and the azimuth angle, ψ.  The additional test
conditions, being advance ratio and tip Mach number at
nominal values of 0.15 and 0.63, respectively, are
essentially constant and are not plotted in Fig. 3.  The
vertical grid lines in Fig. 3 separate the twelve test
points as can be clearly seen in the α and azimuth angle
plots.

Figure 3 shows very similar trends in the airloads cn data
and the leading-edge pressure data, cp on the blade upper
surface.

Figure 4 graphically shows the relationship between
section airloads and the pressures measured at the 3.5%
chordwise location on the upper and lower blade surfaces
for three radial locations (0.90R, 0.72R, and 0.62R).  A
non-linear  trend is  seen between cn and cp,
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with the non-linearity being greater for the lower surface
cp .  Reduced  non-linearity between cn and cp is seen for
the more inboard locations.   Also shown in Fig. 4 is cn

as function of Delta_cp=cp,upper-cp,lower, which shows a
more linear trend, especially at the inboard locations.

Mathematical Models

The use of linear regression analysis and of neural
network analysis was investigated to estimate the blade
section airloads from blade leading edge pressures and
representative test conditions.  The regression and neural
network models are discussed next.

Linear Regression Model

The general linear regression equation is:

    cn,est = a0 + Σ a1,i Xi + Σ a2,i Xi

2 + Σ a3,i Xi

3 + …   (1)

where cn,est is the estimated blade section normal force,
Xi are the regression input variables,
and aj,i are the regression coefficients.

The Xi-variables are: advance ratio µ, shaft angle of
attack αshaft, CT/σ, tip Mach number, Mtip, and the blade
leading-edge pressure measurements, cp at 2%, 3.5%, or
6.5% chord on the upper and lower blade surfaces at the
considered radial station, r/R.  

The general linear regression Eq. (1) includes higher
order terms.  However, only higher order terms for
cp,upper and cp,lower are considered in this investigation.  
The test condition parameters are constant for a
particular test point and are only incorporated as linear
terms in the regression model.  

Neural Network Model

A two-layer neural network (nn) model as depicted in
Fig. 5 was used in the present investigation to estimate
the blade sectional normal force coefficient, cn, from
measured leading edge pressure measurements and test
condition parameters.  A number of two-layer networks
were studied varying in the number of inputs and in the
number and type of hidden layer nodes.  A Levenberg-
Marquardt scheme is used to train the networks.

Only multiple-inputs / single output (MISO) neural
network models were considered for this investigation: a
MISO-network for each radial location, r/R, for which
the section normal force coefficient, cn, is to be
estimated.  

The inputs to the neural network model consisted of the
measured blade leading-edge pressure coefficient, cp, (at
2%, 3.5%, or 6.5% chord) on the upper and lower blade
surface, the azimuth angle, ψ,  and the four test
condition parameters, µ, Mtip, αshaft, and CT/σ.  The

output of the network was the estimated airloads data,
cn,est, at the radial station, r/R.  

The number of nodes in the hidden layer was varied
from 1 to 6.  Tangent hyperbolic activation functions in
the hidden layer were used without or with one linear
activation function node.  A linear transfer function and
a tangent hyperbolic activation output function were
considered for the output node.  Initial work showed the
linear transfer function in the output node to provide
superior results and was therefore specified for the
remainder of the investigation.

Output layer

Hidden layer

Input layer

•••

•••

Fig. 5. Schematic of a two-layer neural
network perceptron (multiple inputs / s ingle
output)

Matlab® Toolbox

A Toolbox of Matlab® codes was developed by the
author to perform the regression and nn-analyses using
Matlab®, version 5.2, running on a MacIntosh
PowerBook G4 (800 MHz, OS 9.2).  Various neural
network functions from Ref. 9 were incorporated in the
Toolbox.  The Toolbox user specifies by means of a
Graphical User Interface (GUI) the database to be loaded,
the desired analysis method (regression or neural
network), the multiple inputs and single output to the
model, and the analysis model structure.  For the
regression model, a GUI-popup window allows the user
to specify for each selected input the order to which the
input should be represented in the model (see Eq. 1).
For the nn-option, the user specifies the network
architecture; i.e. number/type of nodes in the
hidden/output layer.  

It should be noted that if a pressure transducer for a
particular test condition was non-operational, the
corresponding cp values were set to NaN (Not-A-
Number) in the TRAM DNW blade pressure database.
Similarly, if insufficient pressure measurements along
the chord were available at a test condition to compute



the section normal force coefficient at a radial station,
all corresponding cn-values in the database for that test
condition were set to zero.  In performing the regression
and neural network analysis for a particular r/R-location,
these cp=NaN and cn=0 data are identified. The Toolbox
allows for the elimination of such test points in the
loaded database when estimating the regression
coefficients or neural network nodal weights (training
cycle).  Also, the Toolbox allows for the creation of a
training data set and a separate test data set for
evaluating the math model.  

The Toolbox also allows for the export and import of
the neural network models (input/output selection,
architecture and corresponding weight matrices) to allow
for the evaluation of the networks in estimating airloads
from different data subsets.

The Toolbox allows for the export and import of the
airloads data in tabular format and for the depiction of
such data in graph form so as to compare the results of
the various linear regression math models and various
neural network models.

The stopping criteria for training the neural network is
either to achieve an error bound tolerance for two
consecutive epochs of 10-12, or to exceed 1000 training
epochs.  Typically the limit of 1000 epochs terminates
the network training for networks containing more than
3 to 4 nodes in the hidden layer.

Analysis Approach

The number and the type of inputs to the regression
model of Eq. (1) and to a specific neural network
architectural model (Fig. 5) are systematically varied to
evaluate their contribution to accurately estimate the
blade section normal force coefficient.  

The measured and estimated cn data are graphically
displayed by the Toolbox as are the residual error data
given by cn-cn,est.  Figure 6 presents an example of this
graphical display, showing the measured versus
estimated data in the top plot and the residual error data
in the bottom plot.  The estimated airloads in Fig. 6
represent the results of a linear regression analysis
model using only the blade upper surface cp-data at 3.5%
chord to estimate the cn-data at r/R=0.90.  As indicated
by the x-axis label, the vertical dotted lines in Fig. 6
separate the database subsets, i.e. the airloads over one
azimuth sweep for each of the twelve considered test
conditions.  The measured and estimated airloads as well
as the residual error data for subset seven (α=-10o,
cT/σ=0.128) are presented in Fig. 7 to show more
detail.  Although the general trend of cn as a function of
the azimuth angle is captured by the math model as

shown in Fig. 7, the magnitude of the airloads estimate
is fairly inaccurate.

The Toolbox also allows for conversion of cp and cn to
cpM

2 and cnM
2, respectively, where M is the local blade

section Mach number obtained from

  M = [(Vsinψ cosαshaft+Ωr)2+(Vsinαshaft)
2]/a2 (2)

This Toolbox conversion option allows for the
evaluation of the ability of the regression and neural
network models to also estimate airloads in terms of
cnM

2 from blade pressure data expressed as cp or cpM
2.

Figure 8 shows an example of the measured and
estimated cnM

2 data at 0.90R using a regression model
with cpM

2, measured at 3.5% chord on the blade upper
surface as the sole input.  Figure 9 shows the
corresponding data from the seventh subset (α=-10o,
cT/σ=0.128).

The standard deviation (S.D.) of the residual error data is
shown in the upper-right corner in the residual error
plots of Figs. 6 and 8.  The standard deviation of the
residual error data is used as a metric of the "goodness"
of fit of the airloads prediction.  This metric facilitates
the comparison of the various regression and neural
network models in their ability to accurately estimate
the airloads.
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Regression model evaluation

The upper and lower surface pressure measurements at
the 3.5% chordwise stations in combination with the
various test conditions and azimuth angle were used as
inputs to various regression models to estimate the
blade section normal force coefficient, cn.  Figure 10
shows the goodness of fit when assuming only linear
terms in Eq. 1 and varying the inputs to the regression
model.  The standard deviation of the residual error in
the airloads estimation, being the goodness of fit of the
considered model, is shown along the x-axis in Fig. 10.
The various inputs to the considered regression models
are shown along the vertical axis of Fig. 10.  

Figure 10 shows that using only the upper surface
cp, upper data provides better load estimations than using
only the lower surface cp, lower data.   This is especially
true for the more inboard locations.  Using both upper
and lower surface pressure data improves the airloads
estimation at all radial locations.  Including the test
conditions gives only minor improvements in the
airloads estimation.
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Figure 7 shows a representative example (subset #7:
α=-10o, CT/σ=0.128) of the airloads estimation for
0.90R when only the upper surface pressure is an input
to the regression model.  The overall goodness of fit for
this regression model is shown as the top bar (labeled
'upper') in Fig. 10 for 0.90R.  Figure 11 shows the
estimation for the same data subset #7, but for the
regression model which has as inputs α , CT/σ, and the
upper and lower surface pressures at 3.5% chord.  The

overall results for this regression model are depicted in
Fig. 10 as the bottom bar (labeled 'u/l + ashaft + ct/s')
for 0.90R.  The improvement seen in the airloads
estimation when comparing Figs. 7 and 11 is mostly
due to including the lower blade surface pressure as
input to the regression model.

Figure 4 shows a non-linear trend between airloads and
blade leading edge pressures.  Therefore, including
higher order pressure terms in the regression model was
investigated (see Fig. 12).  The test conditions were
maintained as first order terms only.  Figure 12 shows
that including second order pressure terms improves the
load estimation essentially only when the upper surface
pressure is the sole input to the regression model and its
influence is reduced substantially for the more inboard
radial locations.  
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Fig. 12. Goodness of fit for cn regression
models, incorporating higher order terms for
pressure data  at three radial locations

Regression analysis models in which cpM
2-data are

inputs and cnM
2-data are the output were also evaluated.

Figure 13 shows representative results at the 0.90R
radial location.   Again the inclusion of the second order



pressure terms shows the largest effect if cp,upper is the
sole input to the model.  The results show that the
second order term's contribution to improving the
accuracy of the cnM

2 prediction diminishes for the more
inboard locations.  A comparison of Figs. 12a and 13
shows that the influence of CT/σ is much greater when
estimating airloads in terms of cnM

2 versus cn at the
0.90R stations.  For the 0.72R and 0.62R stations
minimal improvements in cnM

2 estimation are seen
from the inclusion of CT/σ as an input.
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Fig. 13. Goodness of fit for cnM2 regression
models for 0.90R, incorporating higher order
terms for pressure data

Figure 9 shows a representative sample of a regression
model to estimate the airloads in the format cnM

2

(subset #7, α=-10o, CT/σ=0.128) when using only
upper surface pressure, cpM

2, as an input.  Figure 14
shows the same subset, but for the regression model,
which has as inputs α , CT/σ, and the upper and lower
surface pressures, cpM

2, at 3.5% chord.  The overall
goodness of fit for the database for these two regression
models is shown in Fig. 13 as the 1st order models with
y-axis labels of 'upper' and 'u/l + ashaft + ct/s',
respectively.  Most of the improvement in the airloads
estimation between Figs. 9 and 14 is due to the
inclusion of the lower surface pressure as an input to
the regression model.

Neural network model evaluation

Figures 15 through 17 summarize the results of varying
the inputs to various neural network models in
estimating the airloads, cn, at radial locations 0.90R,
0.72R, and 0.62R, respectively.  The evaluation metric,
the standard deviation of the residual error, is shown
along the x-axis in Figs. 15-17.  The model input
description is provided in the y-axis of the subplots of
Figs. 15-17.  Seven input scenarios are considered as
shown along the y-axis.  The model inputs are the
upper (u) or lower (l) blade pressure measurements at
3.5%-chordwise station as single inputs and as
combined inputs, as well as these two pressure
measurements in combination with the test parameters
of shaft angle of attack (ashaft) and thrust level (ct/s).  
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The azimuth  angle (label=az) is also  considered  as  an
input.  The five input case consists of upper and lower
blade pressures and  α, CT/σ, and ψ.  The upper and
lower blade pressure measurements were considered as
individual inputs as both pressures were not always
available for each test points at all radial locations (see
Table 1).  Advance ratio and tip Mach number were also
considered as inputs.  However, since these test
parameters varied only slightly for the twelve considered
test cases, inclusion of these parameters as nn-input
showed negligible effect on the accuracy of the airloads
estimation.

The neural network model's architecture is defined in the
legend of each subplot of Figs. 15-17.  The following
nomenclature is used to identify these networks.  The
letter 'L' is used to identify a linear node in the hidden
layer, whereas 'H' is used to identify a tangent
hyperbolic activation function for a node in the hidden
layer.  The number 'i' in 'LHi' or 'Hi' identifies the
number of such H-functions in the hidden layer.  Only
one linear node is considered for the hidden layer.  The
output layer has a linear activation function.  Thus the
LH4 network contains one linear node and four nodes
with tangent hyperbolic activation functions in the
hidden layer and has a linear output node.  Twelve such
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Fig. 15. Goodness of fit for neural network
models in estimating airloads cn at radial
station 0.90R using various inputs
(pressures at 3.5% chord)
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Fig. 16. Goodness of fit for LHi neural
network models in estimating airloads cn at
radial station 0.72R using various inputs
(pressures at 3.5% chord)
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Fig. 17. Goodness of fit for neural network
models in estimating airloads cn at radial
station 0.62R using various inputs
(pressures at 3.5% chord)
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of airloads cn for considered test points for
seven radial locations

neural network configurations were considered having
from 1 to 6 nodes in the hidden layer and containing one
or no linear activation function in the hidden layer (see
Figs. 15–17).  

It should be noted that a neural network having just one
linear node in the hidden layer and a linear output node
will essentially provide the linear regression model
results in which all inputs are represented as linear
terms only. The regression coefficients can be derived
from the weights obtained in this 'L' neural network
model.



When comparing the goodness of fit metric from
airloads estimations at different radial stations it needs
to be kept in mind that the magnitude of the mean and
the range of airloads changes with the radial location.
The range of the airloads, defined as maximum –
minimum, for each test point was determined and the
mean of these ranges as well as the maximum range are
shown in Fig. 18.  Note that both the mean and
maximum range increases as r/R decreases.   

Figure 15 shows that for a specific neural network
model architecture (L, LH, etc), using only the upper
surface blade pressure gives better airloads estimates as
compared to using only the lower surface blade pressure
which was expected from the trends observed in Figs. 3
and 4 and from the linear regression results.  The
estimation of the airloads from the lower blade surface
pressure becomes less accurate as a more inboard radial
location is considered (Figs. 16–17).  Improvement in
the airloads estimation is seen when both upper and
lower blade surface pressures are used, although this
improvement over the upper-surface pressure-only case
is minimal for the 0.62R radial location (Fig. 17).  

Inclusion of test conditions α  and CT/σ as model input
parameters tends to improve the airloads estimation of
the nn-models with more than two-three nodes.  

Note the improvement that is seen in Figs. 15–17 in
the nn-models by including the azimuth angle (az) as an
input parameter.  This improvement with be discussed
in more detail when describing the airloads estimation
results in terms of  cnM

2.

For a given input set, increasing the number of nodes in
the neural network's hidden layer tends to improve the
airload estimation accuracy (Figs 15-17).  The initial
improvement when going from a one node 'L' network
to a two node 'LH' network is substantial for the 0.90R
station (Fig. 15) when only the upper or the lower cp

pressure is an input to the network.  Substantial
improvements for all three radial locations are also seen
for the five-input cases when adding nodes to the hidden
layer (Figs 15-17).

Figures 15-17 show that a one-node 'H' network
performs better than a one-node 'L' network.  However,
as more nodes are added, the LHi and Hi networks tend
to perform equally well in estimating the airloads, cn.

Figures 19 through 21 show the analysis results using
the same neural network model architectures, but using
as inputs the upper and lower blade pressure
measurements at 3.5%-chordwise station in the form of
cpM

2 and the output parameter being cnM
2.  Figure 22

shows the mean and the maximum of the ranges of the

cnM
2 airloads.  Note that both the mean and maximum

values decrease as r/R decreases.   

Similar observations can be made for the cnM
2 goodness

fit in Figs. 19-21 as previously made for the cn-airloads
estimation (Figs. 15-17): adding nn-nodes for a specific
input set tends to improve the estimation; a substantial
improvement is seen when going from a L to an LH
model, especially at the 0.90R station; the additional
input of α  or CT/σ improves the fit; using upper and
lower surface pressure inputs provides better estimations
as compared to inputting only the upper or lower
surface pressure; and upper surface pressure only
provides better estimates as compared to lower surface
pressure only, especially at the inboard radial stations.
At 0.90R the addition of CT/σ in Fig. 19 shows
substantial improvements in the cnM

2 estimation,
which were not observed in Fig. 15 in estimating cn.
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Fig. 19. Goodness of fit for neural network
models in estimating airloads cnM2 at radial
station 0.90R using various inputs
(pressures at 3.5% chord)
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Fig. 20. Goodness of fit for neural network
models in estimating airloads cnM2 at radial
station 0.72R using various inputs
(pressures at 3.5% chord)

0 0.005 0.01 0.015 0.02

upper          

lower          

u/l            

u/l+ashaft     

u/l+ct/s       

u/l+az         

five inputs    

Standard deviation of residual error

N
N

 m
od

el
 in

pu
ts

L
LH1
LH2
LH3
LH4
LH5

0 0.005 0.01 0.015 0.02

upper          

lower          

u/l            

u/l+ashaft     

u/l+ct/s       

u/l+az         

five inputs    

Standard deviation of residual error

N
N

 m
od

el
 in

pu
ts

H1
H2
H3
H4
H5
H6

Fig. 21. Goodness of fit for neural network
models in estimating airloads cnM2 at radial
station 0.62R using various inputs
(pressures at 3.5% chord)
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of airloads cn for considered test points for
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Azimuth angle effect

The estimation of the airloads in terms of cn (Figs. 15-
17) or cnM

2 (Figs. 19-21) is improved by the input of
azimuth angle to the neural network models.  The
influence of the azimuth angle input on the estimation
accuracy of the airloads cnM

2 is illustrated in Fig. 21,
which shows the results of the LH3 neural network at
the 0.90R radial station using as inputs α , CT/σ, and
cp-data on the upper and lower blade surface at the 3.5%
chordwise station.  Shown in Fig. 23 is the data subset
for α=-10o and CT/σ=0.128.  Reference 7 states that in
attached flow, cn leads the cp,2% data and describes a
correction method

cn=cn,look-up-table+Tpc
•
 n,look-up-table

where in hovering flight the time constant, Tp,
represents 10º at  0.5R and 5º at the tip.  Providing the
azimuth angle information to the neural network model
results in the airloads estimation curve to move to the
left in Fig. 23; i.e., it corrects for the cn leading cp.
This azimuth correction is seen at all radial locations.
This correction is also seen when inputting only the
upper or the lower blade surface pressure to the nn-
model.

Although the azimuth does improve the nn-model
airloads estimation, a problem was identified with this
input in that the estimated airloads trace at 0º and 360º
azimuth did not always line up correctly.  This
phenomenon is barely noticeable in Fig. 23 in the
residual error plot.  Presently the azimuth input is the
saw-tooth trace seen in Fig. 3.  Limited work was
performed with an alternate azimuth input (sin(ψ),
cos(ψ)) in an attempt to alleviate this phenomenon, but
no consistent results were obtained.  Future work will
examine the substitution of a c

•
 p-type input for azimuth

on the neural network's airloads estimation accuracy.
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Fig. 23. Measured versus estimated airloads
(LH3-nn-model; without and with azimuth
angle as input) and residual error as function
of azimuth angle for database subset #7 (αααα=-
10o, CT/σσσσ =0.128)

cn versus cnM 2 Airloads Estimation

Airloads estimation in the form of cn and cnM
2 were

obtained from various neural network models using as
inputs cp and cpM

2 at 3.5% chord, respectively.  The
estimated cn-data form the LH3-model were converted to
cnM

2 and compared to measured cnM
2-data and the

estimated cnM
2 obtained from the LH3-model using

cpM
2-data as input and measured cnM

2-data as output.
Additional nn-inputs are α  and CT/σ, while azimuth is
an option input.  Figures 24 and 25 compare the
measured cnM

2 airloads for 0.90R at α=-10o and
CT/σ=0.128 with the directly estimated cnM

2  airloads
and after conversion of the estimated cn-airloads to the
cnM

2-format.  Figure 24 presents nn-results without
azimuth input, whereas the results of Fig. 25 are for the
nn-model, which has azimuth as an input.  Figure 24
shows that largest difference in the cnM

2–estimates
occur for azimuth angles from 100º to 220º.  In this
region more accurate results are obtained from a nn-
model, which computes cnM

2 directly as compared to a
nn-model, which estimates cn first.  Figure 25 shows
that the differences in airloads estimates from the two
nn-models become small when azimuth is an nn-input.  
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Review of the airloads traces for the twelve test
conditions and for the various radial locations shows
cnM

2 being more accurately estimated from training a
nn-model against cnM

2  as compared to training the nn-
model against cn for r/R=0.90, 0.82, and 0.72; the
reverse is true for r/R=0.62.  As seen in Figs. 24 and
25, the differences tend to be small, especially if
azimuth is an nn-input.

Influence of Leading Edge Pressure
Transducer Location

Initial work in estimating the blade section airloads used
the 3.5% chordwise station pressures since this is the
only station at which pressure transducers were installed
at the intermediate radial locations (r/R=0.98, 0.93,
0.87, 0.77, 0.67, 0.56, and 0.42; see Table 1).
However, for the seven radial stations where detailed
chordwise pressures are available, the pressure data from
a different chordwise station can be selected as an nn-
input.  This might be a necessity if the 3.5% pressure
transducer was non-operational.  Figure 26 shows the
effect of selecting pressures from different chordwise
stations (2.0%, 3.5%, or 6.5% chord) as input to the
network on the goodness of fit in estimating the
airloads cnM

2 at seven radial locations, which are
identified in the y-axis label.  The shaft angle, α , and
thrust, CT/σ, are nn-inputs as well.  Only the upper
surface cpM

2 data were used as input since the
corresponding lower surface cpM

2-data were unavailable
in quite a few cases.  Figure 26 shows the results of the
LHi-neural network models, which are identified along
the y-axis in each subplot.  Results for the Hi-nn-
models are similar, except that the H and H2 networks
tend to provide better results than the L and LH
networks.

Figure 26 shows that increasing the number of nodes in
the neural network tends to improve the airloads
estimation.  At the 0.96R location, the 2.0% chordwise
pressure provides improved airloads estimation as
compared to more aft located pressure data; this is
especially true for three or more nodes in hidden layer of
the network model.  For the 0.82R location the 2.0%
pressure data provides less accurate airloads estimates as
compared to the 3.5% and 6.5% chordwise pressure data
and the 2.0% model-estimate accuracy decreases greatly
for the more radial inboard stations.

Figure 26 shows slightly better estimates using the
3.5% chordwise pressure as compared to the 6.5%
chordwise pressures for radial locations r/R=0.82, 0.72,
and 0.50.  The 6.5%-model is more accurate at
r/R=0.62.  Except for the most outboard radial stations,
the 3.5%-chordwise station  is an  appropriate  location

for obtaining upper-surface leading-edge pressures from
which blade section airloads can be estimated.
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Figure 27 shows the goodness of fit results for radial
locations 0.90R and 0.62R for neural networks with
both upper and lower surface pressures as inputs.
Figure 27 shows again that the 2.0%-chordwise
pressures provide more accurate results as compared to
the 3.5%-c pressures at 0.96R.  The 6.5%-chordwise
pressures provide the most accurate results at 0.62R,
while the 2.0%c and 3.5%c pressure provide similar
goodness of fit results.  Comparison of the
corresponding subplots of Figs. 26 and 27 shows again
that considerable improvement in the airloads
estimation can be obtained if both the upper and lower
surface pressures are input to the neural network model.  
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neural network models in estimating airloads
cnM2 at two radial stations (inputs:
upper/lower surface pressures at 2%, 3.5%,
or 6.5% chordwise station, αααα,,,,     and CT/σσσσ ))))

Airload Estimation for Test Conditions Not
Part of Training Database  

The above discussion shows that neural networks with
three or more nodes in the hidden layer do an adequate
job in estimating the airloads from leading edge
pressures for the training database.  Such neural
networks might be used to estimate the airloads for
those test conditions where insufficient chordwise
pressure data in the TRAM DNW-pressure database
prevented the integration of pressures into the blade
section airloads.  To evaluate this ability, the α=-10o

test points were removed from the training data base for
the 0.90R radial station and a LH3 neural network
(inputs: α,  CT/σ, and cpM

2 at 3.5% chord, without and
with azimuth) was trained against cnM

2 from the
remaining ten test conditions.  The resulting two nn-
models were subsequently used to estimate the airloads
for the α=–10o cases.  Figures 28 and 29 show

measured and estimated airloads for α=-10o at
CT/σ=0.089 and CT/σ=0.128, respectively.  The airloads
are estimated to within anticipated accuracy at both
CT/σ levels.  Note that the airloads traces for the nn-
models with azimuth input do not line up at the 0º and
360º in the residual error plots of Figs. 28 and 29.

The ability of a LH3-model to estimate airloads for test
points that are not part of the training database for the
0.62R radial station is shown in Figs. 30 and 31 for
subsets 3 (α=-2o, CT/σ=0.089) and 10 (α=+2o,
CT/σ=0.128), respectively.  Figures 30a and 31a show
the measured and estimated airloads when these two test
points are part of the training database, whereas Figs.
30b and 31b show the estimates when these test points
are not part of the training database.  Comparison of the
airloads estimates in Figs. 30a and 30b and in Figs. 31a
and 31b for the 0.62R station and of Figs. 23 and 29 for
the 0.90R station shows that the nn-models can be used
successfully to estimate airloads for test conditions that
were not part of the training database.  
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(LH3-nn-model; without and with azimuth
angle as input) and residual error as function
of azimuth angle for database subset # 1
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(0.90R, αααα =-10o, cT/σσσσ =0.128); subsets #1 and
#7 removed from training database
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Fig. 30. Measured versus estimated airloads
(LH3-nn-model; without and with azimuth
angle as input) and residual error as function
of azimuth angle for database subset # 3
(0.62R, αααα =-2o, cT/σσσσ =0.089)
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Fig. 31. Measured versus estimated airloads
(LH3-nn-model; without and with azimuth
angle as input) and residual error as function
of azimuth angle for database subset # 1 0
(0.62R, αααα =+2 o, cT/σσσσ =0.128)

Airloads Estimation at Intermediate Radial
Locations

The evaluation of the regression and neural network
models thus far has been restricted to the estimation of
airloads from leading edge pressure data at the radial
stations where, in general, detailed chordwise pressure
data were available (r/R=0.96, 0.90, 0.82, 0.72, 0.62,
0.50, and 0.33).  Such models might also be used to
estimate the loading at intermediate radial locations
(r/R=0.96, 0.90, 0.82, 0.72, 0.62, 0.50, and 0.33),
where only 3.5% chordwise pressure data are available.
is.  Given that neural network models with three or
more nodes in the hidden layer performed better then
regression models, the discussion here is limited to a
LH3-nn-model.

The LH3-neural networks, trained against the cnM
2 data

from radial stations r/R=0.96, 0.90, 0.82, 0.72, 0.62,
0.50, and 0.33 were used to estimate the airloads at the
adjacent stations using the 3.5% chordwise station's
pressure data.  Whenever possible the pressure data from
the upper and lower blade surfaces were input to the
neural network model.  Input changes were made as
necessary.  For instance, no lower surface pressures
were available at r/R=0.50 (see Table 1).  Therefore, the
0.50R-nn-model only used the upper surface pressure as
input and this model was subsequently used to estimate
the airloads at r/R= 0.56 and 0.42, using only the upper
surface pressure from these stations, even though upper
and lower cpM

2 data were available at these two radial
locations.

For the initial evaluation of the ability of neural
network models trained for one radial station to estimate
airloads at adjacent radial stations, the LH3-nn-models
were used to estimate the airloads at an adjacent radial
location, for which the airloads were known as well.
Note that the radial distance between stations in this
case is of the order of 0.1R.  For the intermediate radial
stations this distance would be 0.05R.  NN-model
inputs are α,  CT/σ, and cpM

2 at 3.5% chord at the radial
location of interest. Models without and with azimuth
input were evaluated.  Airloads estimates for data subset
#3 (α=-2o, cT/σ=0.089) are shown as representative of
the twelve test conditions in the database.  

Figure 32 shows the measured airloads at 0.90R and the
estimated airloads using the nn-models, trained against
the 0.96R- and 0.82R-data.  The 0.82R-model's
estimates show good agreement with the measured
airloads.  The 0.96R-model with azimuth input shows
the correct trends, but the estimate is vertically offset
from the measured loading.



Similar evaluations were done for 0.82R, using the
0.72R and 0.90R-nn-models (Fig. 33) and for 0.72R,
using the 0.62R and 0.82R models (Fig. 34).  Figure
33 shows that the 0.90R-nn-models are performing well
in estimating the 0.82 airloads.  The 0.72R-nn-models
show the correct trends as function of azimuth, but are
vertically offset from the measured airloads.  Figure 34
shows that the nn-models, in general, provide the
correct airloads-trends around the azimuth, but that the
load traces are vertically offset.

Representative airloads estimates for intermediate radial
locations 0.93R and 0.56R are shown in Figs. 35 and
36, respectively, for data subset #3.  The 0.50R-nn-
model in Fig. 36 utilizes only the upper surface
pressure as an input, since the lower surface pressure
transducer was non-operational (see Table 1).  Very
similar trends in airloads estimates are seen around the
azimuth, but the traces are again vertically offset,
especially at the 0.56R location (Fig. 36).  Better
agreement between the curves can be obtained by
adjusting the nn-output node's bias term to represent the
mean cnM

2-level at the considered radial station.   One
option to determine this bias term is to perform a spline
curve fit of the mean cnM

2-values as function of radial
location for those stations for which detailed pressure
data are available.
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Fig. 32. Airloads estimation at station
0.90R (αααα =-2o, cT/σσσσ =0.089)
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Fig. 33. Airloads estimation at station
0.82R (αααα =-2o, cT/σσσσ =0.089)
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Fig. 34. Airloads estimation at station
0.72R (αααα =-2o, cT/σσσσ =0.089)
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Fig. 35. Airloads estimation at intermediate
station 0.93R (αααα =-2o, cT/σσσσ =0.089)
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Fig. 36. Airloads estimation at intermediate
station 0.56R (αααα =-2o, cT/σσσσ =0.089)

Concluding remarks

Detailed chordwise pressure data at seven radial stations
were acquired for the Tilt-Rotor Aeroacoustic Model
(TRAM) in the Duitse-Nederlandse Wind Tunnel
(DNW).  These pressure data were integrated to obtain
the local blade section normal force.  Pressure data at
3.5%-chord were acquired at seven additional radial
stations. Linear regression models and neural network
modes were evaluated in their ability to estimate the
blade section airloads from leading edge pressures and
representative test conditions for twelve test conditions
of the TRAM pressure database.  These test conditions
represent forward flight at µ=0.15, rotor thrust
CT/σ=0.089 and 0.128, and shaft angle of attack from
–10o (forward) to -10o (aft).

The ability of regression and neural network models to
fit the (training) database was evaluated first.  

Neural networks with two or more nodes in the hidden
layer were seen to provide better airloads estimate than
linear regression models.  Increasing the number of
nodes in the hidden layer tends to improve the airloads
estimation, but incremental improvements are small
beyond three or four nodes.  

Using upper surface pressure data only provides better
airloads estimates than using only lower surface
pressure data.  At the outboard radial locations, the
airloads estimation is greatly improved by using both
upper and lower pressure data.  At the 0.62R station the
inclusion of lower pressure provided only marginal
improvements over the models using only upper surface
pressures.

Input of azimuth angle into the neural network model
improved the estimation by correcting for cn leading cp

over a major region of the azimuth.  However,

additional work is required to ensure that the airloads at
0º and 360º are in agreement.

Using 2.0% chordwise station data provided better
airloads estimates at the outboard radial location than
using 3.5% or 6.5% chord pressures.  For radial stations
inboard of 0.82R using the 3.5% and 6.5% chordwise
pressures provided more accurate airloads estimates than
using 2.0% chord pressures; this relative improvement
increased for the more inboard stations.

The ability of a neural network to estimate the airloads
from pressures of check-data-sets was evaluated; i.e, for
data which were not part of the data against which the
model was trained.  The network's hidden layer
contained four nodes with one linear and three tangent
hyperbolic activation functions.  The pressures at the
3.5% chordwise station were used as inputs as were
thrust, shaft angle of attack, and azimuth angle.  The
neural network model performed well in estimating
check-data airloads if the model was trained against data
from that same radial location.  

The neural network model performed reasonably well in
estimating airloads at adjacent radial locations in that
the airloads trend with azimuth was captured.  However,
the mean value of the estimate was in error, which is
directly related to the bias term in the network's output
layer.  This term needs to be determined separately, for
instance from fitting the mean airloads versus radial
location curve.

Future Work

Azimuth was used in the present investigation as a
neural network input in an attempt to correct for cn

leading cp.  Alternate methods for performing this
correction will be investigated.  Changes to the neural
network models and inputs are also planned to improve
the models capability in estimating the correct level of
the airloads at the intermediate radial stations, where
only pressure data at the 3.5% chordwise station are
available.

Neural networks will be used to fill-out the TRAM
airloads database.  The training database against which
selected neural network models are trained will be
expanded to include points from all 98 identified test
conditions, for which both leading edge pressure data
and airloads are available in the TRAM database.  These
trained networks will subsequently be used to estimate
the airloads at test conditions for which leading edge
pressure data are available (same radial station) and will
also be used to estimate the airloads at the intermediate
radial locations, having only pressure transducers at the
3.5% chordwise station.
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